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NUMERICAL DISSIPATION

1. The governing equations of most physical systems are

dominated by convective and dissipative processes.

2. In processes governed by nonlinear equations, such as

the Euler and Navier-Stokes equations, there can be a

continual production of high-frequency components of

the solution, leading, for example, to the formation of

shock waves.

3. In a real physical problem, the production of high

frequencies is eventually limited by viscosity.
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4. However, when we solve the Euler equations

numerically, we have neglected viscous e�ects.

5. Thus the numerical approximation must contain some

inherent dissipation to limit the production of

high-frequency modes.

6. Although numerical approximations to the

Navier-Stokes equations contain dissipation through

the viscous terms, this can be insu�cient, especially

at high Reynolds numbers, due to the limited grid

resolution which is practical.

7. Unless the relevant length scales are resolved, some

form of added numerical dissipation is required
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8. The addition of numerical dissipation is tantamount

to intentionally introducing nonphysical behavior,

and must be carefully controlled such that the error

introduced is not excessive.

9. A centered approximation to a �rst derivative is

non-dissipative, i.e., the eigenvalues of the associated

circulant matrix (with periodic boundary conditions)

are pure imaginary.

10. A non-centered (upwind) approximation to a �rst

derivative is dissipative, e.g., 1st Order backward

di�erencing leads to eigenvalues which have a real

part.
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11. For our model wave equation, the sign of the wave

speed a combined with a speci�c choice of di�erence

operator can lead a positive real part of the

eigenvalues and therefore inherent instability.
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One-Sided First-Derivative Di�erencing

1. Starting with our favorite wave equation

@u

@t
= �a

@u

@x
(1)

2. Consider the generalize three point di�erence

operator

�a(�xu)j =
�a

2�x
[�(1 + �)uj�1 + 2�uj + (1� �)uj+1]

=
�a

2�x
[(�uj�1 + uj+1) + �(�uj�1 + 2uj � uj+1)] (2)
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Backward/Forward Di�erence Operator

1. The operator is divided into

(a) Antisymmetric component (�uj�1 + uj+1)=2�x

(b) Symmetric component

�(�uj�1 + 2uj � uj+1)=2�x

(c) Antisymmetric component: 2nd centered

di�erence.

(d) With � 6= 0, the operator is only 1st accurate.

(e) A backward di�erence operator is given by � = 1

(f) A forward di�erence operator is given by � = �1.
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Type Dependent Di�erencing

1. For periodic boundary conditions, matrix operator is

�a�x =
�a

2�x
Bp(�1� �; 2�; 1� �)

2. The eigenvalues of this matrix are,

m = 0; 1; : : : ;M � 1

�m =
�a

�x

�
�

�
1� cos

�
2�m

M

��
+ i sin

�
2�m

M

��

3. For a positive, forward di�erence (� = �1):

<(�m) > 0
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4. Centered di�erence operator (� = 0): <(�m) = 0

5. For a positive, backward di�erence: <(�m) < 0.

6. The forward di�erence operator is inherently unstable

7. Centered/backward operators are inherently stable.

8. If a is negative, the roles are reversed.

9. <(�m) 6= 0, the solution will either grow or decay.

10. Equation 2 can be used with a switching scheme:

(a) If a > 0, set � = 1

(b) If a < 0, set � = �1
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The Modi�ed Partial Di�erential Equation

1. Taylor series expansion of the terms in Eq. 2.

(�xu)j =
1

2�x
[ 2�x

�
@u

@x

�
j

� ��x2
�
@2u

@x2

�
j

+
�x3

3

�
@3u

@x3

�
j

�
��x4

12

�
@4u

@x4

�
j

+ : : : ] (3)

2. The antisymmetric portion introduces odd derivative

terms.

3. The symmetric portion introduces even derivatives.
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The Modi�ed Partial Di�erential Equation

1. Substituting into Eq. 1 gives

@u

@t
= �a

@u

@x
+

a��x

2

@2u

@x2
�

a�x2

6

@3u

@x3
+

a��x3

24

@4u

@x4
+ : : : (4)

2. The modi�ed PDE we are really solving.

3. Consistent with Eq. 1, two equations identical when

�x! 0.

4. In practice, �x can be small, but it is not zero

5. Each term given by Eq. 4 is excited to some degree.

6. The actual PDE being solved is di�erent than the

original, Eq.1
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E�ect of Errors Terms: Modi�ed PDE

1. Consider the simple linear partial di�erential equation

@u

@t
= �a

@u

@x
+ �

@2u

@x2
+ 

@3u

@x3
+ �

@4u

@x4
(5)

2. Periodic BC and impose an IC: u = ei�x.

3. Wave-like solution to Eq. 5 of the form

u(x; t) = ei�xe(r+is)t

4. r and s satisfy the condition

r + is = �ia�� ��2 � i�3 + ��4
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or

r = ��2(� � ��2); s = ��(a+ �2)

5. Solution contains both amplitude and phase terms.

u = e��
2(����2)| {z }

amplitude

ei�[x�(a+�2)t]| {z }
phase

(6)

6. The amplitude of the solution depends only upon �

and � , the coe�cients of the even derivatives in Eq. 5

7. Phase depends only on a and , the coe�cients of the

odd derivatives.
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E�ect of Errors Terms: Modi�ed PDE

1. Wave speed a is positive

(a) Backward di�erence (� = 1) modi�ed PDE:

� � ��2 > 0

(b) Amplitude of the solution decays.

(c) Deliberately adding dissipation to the PDE.

(d) Forward di�erence scheme (� = �1) is equivalent to

deliberately adding a destabilizing term to the PDE.
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2. Phase of the solution in Eq. 6

(a) Speed of propagation is a+ �2

(b) Modi�ed PDE, Eq. 4, = �a�x2=6.

(c) Phase speed of the numerical solution is less than the

actual phase speed, dispersion.
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Arti�cial Dissipation

1. Note that the use of one-sided di�erencing schemes is

not the only way to introduce dissipation.

2. Any symmetric component in the spatial operator

introduces dissipation (or ampli�cation).

3. Therefore, one could choose � = 1=2 in Eq. 2.

4. The resulting spatial operator is not one-sided, but it

is dissipative.

5. Biased schemes use more information on one side of

the node than the other.
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Third-Order backward Di�erence

1. Third-order backward-biased scheme is given by

(�xu)j =
1

6�x
(uj�2 � 6uj�1 + 3uj + 2uj+1)

=
1

12�x
[(uj�2 � 8uj�1 + 8uj+1 � uj+2)

+(uj�2 � 4uj�1 + 6uj � 4uj+1 + uj+2)] (7)

2. The antisymmetric component of this operator is the

fourth-order centered di�erence operator.
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3. The symmetric component approximates

�x3uxxxx=12.

4. Operator produces fourth-order accuracy in phase

with a third-order dissipative term.
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The Lax-Wendro� Method

1. Previous discussion implies:

(a) Introduce numerical dissipation using one-sided

di�erencing

(b) Backward di�erencing if the wave speed is positive

(c) Forward di�erencing if the wave speed is negative.

2. Lax-Wendro� Method: introduces dissipation

independent of the sign of the wave speed

3. Di�ers conceptually from the methods considered

previously
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Derivation of Lax-Wendro�

1. Taylor-series expansion in time:

u(x; t+ h) = u+ h
@u

@t
+

1

2
h2

@2u

@t2
+O(h3) (8)

2. Replace time derivatives with space derivatives using

PDE

@u

@t
= �a

@u

@x
;

@2u

@t2
= �a

@ @u
@t

@x
= a2

@2u

@x2
(9)
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3. Replace the space derivatives 3-point centered

di�erence

u
(n+1)
j = u

(n)
j �

1

2

ah

�x
(u

(n)
j+1 � u

(n)
j�1)

+
1

2

�
ah

�x

�2

(u
(n)
j+1 � 2u

(n)
j + u

(n)
j�1) (10)
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Stability of Lax-Wendro�

1. For periodic boundary conditions, fully-discrete
matrix operator:

~un+1 = Bp

�
1

2

h
ah

�x
+

�
ah

�x

�2i
; 1 �

�
ah

�x

�2
;
1

2

h
�

ah

�x
+

�
ah

�x

�2i�
~un

2. Eigenvalues of this matrix are, m = 0; 1; : : : ;M � 1

�m = 1�
�
ah

�x

�2 h
1� cos

�
2�m

M

�i
� i

ah

�x
sin

�
2�m

M

�
(11)

3. For j ah
�x
j � 1: eigenvalues have modulus less than or equal

to unity

4. Method is stable independent of the sign of a.
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5. CFL = j ah
�x
j: Courant (or CFL) number.

6. Ratio of the distance traveled by a wave in one time step

to the mesh spacing.
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Modi�ed PDE for Lax-Wendro�

1. See text for derivation of Modi�ed PDE

@u

@t
+ a

@u

@x
=

�
a

6
(�x2 � a2h2)

@3u

@x3
�
a2h

8
(�x2 � a2h2)

@4u

@x4
+ : : :

2. Leading error terms appear on the right side of the

equation.

3. Odd derivatives on the right side lead to unwanted

dispersion

4. Even derivatives lead to dissipation,or ampli�cation,
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depending on the sign.

5. Leading error term in the Lax-Wendro� method is

dispersive and proportional to

�
a

6
(�x2 � a2h2)

@3u

@x3
= �

a�x2

6
(1� C2

n)
@3u

@x3

6. Dissipative term is proportional to

�
a2h

8
(�x2 � a2h2)

@4u

@x4
= �

a2h�x2

8
(1� C2

n)
@4u

@x4

7. Term has the appropriate sign and hence the scheme

is truly dissipative as long as Cn � 1.

25



MacCormack's method

1. MacCormack's Method is closely related to

Lax-Wendro�

2. MacCormack's Time-marching method, (see Chapter

6 of text)

~un+1 = un + hu0n

un+1 =
1

2
[un + ~un+1 + h~u0n+1]

3. Use �rst-order backward di�erencing in the �rst stage

4. Use �rst-order forward di�erencing in the second

stage,
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5. Dissipative second-order method is obtained.

6. For the linear convection equation

~u
(n+1)
j = u

(n)
j �

ah

�x
(u

(n)
j � u

(n)
j�1)

u
(n+1)
j =

1

2
[u

(n)
j + ~u

(n+1)
j �

ah

�x
(~u

(n+1)
j+1 � ~u

(n+1)
j )]

7. Can be shown to be identical to the Lax-Wendro�

method.

8. MacCormack's method has the same dissipative and

dispersive properties as the Lax-Wendro� method.

9. The two methods di�er when applied to nonlinear

hyperbolic systems
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UPWIND SCHEMES

1. Numerical dissipation can be introduced in the

spatial di�erence operator using one-sided di�erence

schemes.

2. Based on stability arguements: the direction of the

one-sided operator depends on the sign of the wave

speed.

3. Hyperbolic system of equations: wave speeds can be

both positive and negative.
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4. In the wave equation example:

(a) If a > 0, Backward di�erencing

(b) If a < 0, Forward di�erencing

5. Eigenvalues of the ux Jacobian for the

one-dimensional Euler equations

(a) u; u+ c; u� c where c is the speed of sound.

(b) When the ow is subsonic u < c , these are of mixed

sign.

(c) To apply one-sided di�erencing schemes to such

systems, some form of splitting is required.
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Characteristic Splitting

1. Consider again the linear convection equation:

@u

@t
+ a

@u

@x
= 0 (12)

2. With the sign of a arbritary .

3. Rewrite Eq. 12

@u

@t
+ (a+ + a�)

@u

@x
= 0 ; a� =

a� jaj

2

(a) If a � 0, then a+ = a � 0, a� = 0.

(b) If a � 0, then a+ = 0, a� = a � 0.
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(c) For the a+ (� 0) term we can safely backward

di�erence.

(d) For the a� (� 0) term forward di�erence.

4. Basic concept behind upwind methods

5. Some decomposition or splitting of the uxes into

terms which have positive and negative characteristic

speeds so that appropriate di�erencing schemes can

be chosen.
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Flux-Vector Splitting

1. Linear, constant-coe�cient, hyperbolic system of

PDE
@u

@t
+
@f

@x
=

@u

@t
+A

@u

@x
= 0 (13)

(a) Can be decoupled into characteristic equations

@wi

@t
+ �i

@wi

@x
= 0 (14)

(b) Wave speeds, �i: eigenvalues of the Jacobian

matrix, A
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(c) The wi's are the characteristic variables.

(d) Backward di�erence if the wave speed, �i, is

positive,

(e) Forward di�erence if the wave speed is negative.
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� Characteristic Splitting

1. In gerneral, we do not go to characteristic space (wi),

but stay in the ux space u;A; f

2. Split the matrix of eigenvalues, �, into two

components

� = �+ + �� (15)

�+ =
�+ j�j

2
; �� =

�� j�j

2
(16)

3. �+ contains the positive eigenvalues

4. �� contains the negative eigenvalues
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� Type Dependent Di�erencing

1. Rewrite the system in terms of characteristic

variables as

@w

@t
+ �

@w

@x
=

@w

@t
+ �+ @w

@x
+ ��

@w

@x
= 0 (17)

2. Spatial terms split into two components according to

the sign of the wave speeds.

3. Backward di�erencing for the �+ @w
@x

term

4. Forward di�erencing for the �� @w
@x

term.
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� Flux vector Splitting

1. Premultiplying by X, the matrix of right eigenvectors

of A, and inserting the product X�1X in the spatial

terms gives

@Xw

@t
+
@X�+X�1Xw

@x
+
@X��X�1Xw

@x
= 0 (18)

2. De�ne

A+ = X�+X�1; A� = X��X�1 (19)

(a) A+ has all positive eigenvalues, by construction

(b) A� has all negative eigenvalues, by construction
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3. Recall that u = Xw

@u

@t
+
@A+u

@x
+
@A�u

@x
= 0 (20)

4. Finally the split ux vectors are de�ned as

f+ = A+u; f� = A�u (21)

5. Leading to the Flux Vector Splitting Form

@u

@t
+
@f+

@x
+
@f�

@x
= 0 (22)
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Flux vector Splitting

1. In the linear case, the de�nition of the split uxes

follows directly from the de�nition of the ux,

f = Au.

2. For the Euler equations, f is also equal to Au as a

result of their homogeneous property, as discussed in

Appendix C of the text.
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3. Note that

f = f+ + f� (23)

4. Thus by applying backward di�erences to the f+

term and forward di�erences to the f� term, we are

in e�ect solving the characteristic equations in the

desired manner.
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Implicit Implementation of FVS

1. Implicit time-marching: need Jacobians of the split

ux vectors.

2. In the nonlinear case,

@f+

@u
6= A+;

@f�

@u
6= A� (24)

3. Signs of the Jacobians must have corresponding �

eigenvalues

A++ =
@f+

@u
; A�� =

@f�

@u
(25)
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4. For the Euler equations:

(a) A++ has eigenvalues which are all positive

(b) A�� has all negative eigenvalues.
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Arti�cial Dissipation Concepts

1. Numerical dissipation can be introduced by using

one-sided di�erencing schemes together with some

form of ux splitting.

2. Dissipation can also be introduced by adding a

symmetric component to an antisymmetric

(dissipation-free) operator.

3. Generalize the concept of upwinding to include any

scheme in which the symmetric portion of the

operator is dissipative.
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Construction: Arti�cial Dissipation

1. De�ne

(�axu)j =
uj+1 � uj�1

2�x
; (�sxu)j =

�uj+1 + 2uj � uj�1
2�x

2. Applying �x = �ax + �sx to the spatial derivative in Eq.

14 is stable if �i � 0 and unstable if �i < 0.

3. �x = �ax � �sx is stable if �i � 0 and unstable if �i > 0.

4. Appropriate implementation is thus

�i�x = �i�
a
x + j�ij�

s
x

5. Extension to a hyperbolic system by applying the

43



above approach to the characteristic variables

�x(Au) = �ax(Au) + �sx(jAju)

�xf = �axf + �sx(jAju)

jAj = Xj�jX�1

6. The second spatial term is known as arti�cial

dissipation.

7. Sometimes referred to as arti�cial di�usion or

arti�cial viscosity.

8. Appropriate choices of �ax and �sx, this approach can

be related to the upwind approach.

44



9. It is common to use the following operator for �sx

(�sxu)j =
�

�x
(uj�2 � 4uj�1 + 6uj � 4uj+1 + uj+2)

10. � is a problem-dependent coe�cient.

11. Symmetric operator approximates ��x3uxxxx and

thus introduces a third-order dissipative term.

12. Appropriate value of �, this often provides su�cient

damping of high frequency modes without greatly

a�ecting the low frequency modes.
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Nonlinear Arti�cial Dissipation, JST

1. 2nd and 4th derivative AD employing a pressure gradient

switch and spectral radius scaling.

rx (�j+1 + �j)
�
�
(2)
j �xQj � �

(4)
j �xrx�xQj

�
=�x

with �
(2)
j = �2max(�j+1;�j ;�j�1),

�j =
jpj+1�2pj+pj�1j

jpj+1+2pj+pj�1j
; �
(4)
j = max(0; �4 � �

(2)
j )

2. Typical values of the constants are �2 = 1=4 and

�4 = 1=100.

3. The term �j is a spectral radius scaling and is de�ned as

�j = juj+ a with a the speed of sound.
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Linear Constant Coe�cient AD

1. Early forms of Arti�cial Dissipation were linear

(� = 1), without the pressure switch.

2. NACA0012, transonic solution
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Non-Linear Arti�cial Dissipation

1. Current

4th Di�erence Only 2nd � 4th
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